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the study of meteors, it is not necessary to know the details of a mete-
orite's geometry. The only two parameters involved in the development
are:

S, the meteorite instantaneous right angle cross section, which is
involved in the evaluation of the friction forces, and more generally, in
the study of interactions between the meteorite and the surrounding air;
and

M, the mass of the meteorite, which in particular enters in the form
of an inertial force in the determination of the meteorite's motion. We
have: M = §-V, where § is the density, and V is the volume of the mete-
orite. We call the following ratio the "shape factor":

S
A= 3r3 ()

A = 1.2 for a sphere, it varies between 1 and 1.7 for a cube, and
for a prism of normal cross section having a side a and a length b, we
find:

For meteorites of very large dimensions (»1 cm), it can be shown
that the meteorites undergo an ablation, which tends to make them spheri-
cal in shape (A = 1.2). Generally, we can say that A remains equal %o
about one.

2. Hypothesis on the Structure of the Atmosphere
2.1 Density

For a homogeneous and isothermal atmosphere, for which the varia-
tions of the acceleration of gravity g with the altitude can be neglected,
we can write:

p(z) = p (0) & 2/E; (2)

where n
H =§%§ = 29,26 T (H in meters and T in %K)

being the reference height, p (z) the density of air at elevation z,LﬁCthe
mean molar mass of air, and T the temperature.

The true atmosphere can always be divided into horizontal slices,
such that

h €z <h',
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with the slices being taken thin enough to be considered as isothermal.
We can then write for the interior of each slice:

z-h (3)

p(z) = p(h) " "H

where, AT
H, = ;7‘“? | : (&)
éa U-(jlh = A

with Hy, Ty and My being the values of H, T and M in the atmospheric

slice considered.

Figure 1 shows the values of T,/, p and H as a function of the
altitude z (from ARDC, 1959). ¢4 can be taken as constant in the zone
where the meteorite trains form (70 to 120 km altitude).

2.2 Mean Free Path

For a population of identical, spherical, and perfectly elastic
molecules, whose speeds follow the Maxwell distribution (thermal equilib-
rium), the mean free path of a molecule is (Refs. 3, 4 and 32):

11 O

p

1 1 CMJ m-

Y - -

o T T/2eNaZ T T/2ppdl T wi/2epcl

= 2710
where: d = 3.7°10'8 cm: mean molecular diameter,

A’= 6.02:10°3 molecules per mole, and
M = mean molecular mass = 28.9

The curve of A(z) (ARDC 1959) is shown in Figure 2.

2.3 Thermal Speeds of the Molecules

Let vp be the root mean square speed of the air‘molecule in the un-
perturbed atmosphere. The curve of vp(z) is shown in Figure 2 (ARDC,
1959). It is seen that, for z£140 km; Vip is less than 800 m/sec, approxi-

mately. Thus, the thermal velocities of the air molecules are small in
comparison with the speeds of most meteorites, at least till the end of

Typed by ¢ S

Proofread by
Correctinns fyned by N




their visible train (we shall later see that the speed of a meteorite at
the end of its visible train is about 5 km/sec).

3. Basic Equations for the Motion of the Meteorite
3.1 Deceleration of the Meteorite

Since the thermal velocities of the air molecules can be neglected,
it is convenient to treat the problem of the interaction between the mete-
orite and the surrounding air by considering a counter motion of a beam

of air molecules encountering a fixed meteorite.

Let v be the speed of the meteorite, S its right angle cross section,
and p the density of air. The mass of air which encounters the meteorite
during a time At is:

AM?!

il

Spvat.

Spveat.

Its momentum is:

i

vAM'

If a fraction I of this momentum is imparted to the meteorite, the latter
has, after the collision, a momentum M(v-a4v), from which the loss of mo-
mentum MaAv is given by:

MAv = I‘Spngt .

From this we obtain the equation for the deceleration of the meteorite:

o . [P —

w &L - rop? j (5)

I'is called the drag coefficient or coefficient of momentum transfer.

Note that (5) gives the motion of the meteorite while neglecting the
acceleration of gravity Mg. This last term is negligible compared with

the term FSpvg, for sufficiently small meteorites; i.e., of dimensions
less than a millimeter. This is satisfied by most natural meteorites.
3.2 Vaporization of the Meteorite

The incident mass of AM' contributes an incident energy:

y




Let A (called the coefficient of energy transfer) be the fraction of this
energy which is absorbed by the meteorite. It can be shown (Refs. 1 and
2) that in the first approximation, most of that energy is used for the
vaporization of a thin film of the frontal surface of the meteorite. The
mass AM of vaporized matter is therefore:

- A =12 3pt
AM = ) AE —v2 Q SprA#

where Q is the overall heat of vaporization per unit mass of the meteor-
ite. After manipulation, the equation for the decrease of mass by vapor-
ization is obtained:

{

| au L4 3

2 at 7 5 ooV (6)
1

The coefficients T and A vary along the trajectory of the meteorite,
but their variations are smaller than those of other parameters, such as
p and v. In the first approximation I' and A can be considered constant.

3.3 Relation Between the Deceleration and the Decrease of Mass

By dividing both sides of (5) and (6), the following relation is
obtained:

aM A o ;
7 EFE Vedv = Eviévi (N

taking, for the rest of the discussion:

= A

4, Reflection of the Air Molecules by the Meteorite

Equations (5), (6) and (7) are very general, and do not imply any
hypothesis on the exact mechanisms which lead to the deceleration and
vaporization of the meteorite. We shall now examine all these mechanisms.

We shall first study the case where only reflection of the air mole-
cules by the meteorite takes place, with no screening effects present.
This means that each molecule of air of the incident beam encounters the
meteorite without undergoing any interaction with the other air molecules
(contrary to this, the screening effect which we shall study in Section 5
consists of a strong interaction between the molecules of the incident
beam and those of the reflected beam).




We shall therefore assume that all the air molecules which encounter
the meteorite have a speed v. They are reflected and have, after the
collision, a root mean square speed equal to V.

We call the following quantity the "accommodation coefficient":

1. . op

trj
v

a*f%. -¢
b T

where E; is the mean kinetic energy of the incident molecules; E,. the
mean energy of the reflected molecules; and Ep the mean energy of the

of the reflected molecules, for a Maxwellian distribution of speeds cor-
responding to a surface temperature T of the meteorite. We have:

1 T << E
) Ep << E,
2) ' E_: L ﬂv? + &
Lo~ = = i,
r 2 r '

where v, is the root meéh square speed of the reflected molecules; and

€ is the dissociation energy, or excitation energy of the reflected mole-
cules.

The mean kinetic energy of the air molecules varies from approxi-
mately 15 to 500 ev, when v varies from 10 to 60 km/sec. The study of
electric discharges in gases (Refs. 2 and 6) shows that the probability
of excitation and ionization of the molecules by impact against a wall
remains low for energies of a few hundred electron volts.

Thus we shall take:

6(( ; m V2
27 'r
v .
from which, a =1 - (—5—)2‘

where a represents approximafely the fraction of kinetic energy lost by
the air molecule during the collision.

The energy absorbed by the meteorite is composed of: (1) the strip-
ping energy by impact, and (2) the thermal energy (predominant); heating
of the meteorite, fusion, vaporization, boiling.

-y LI /"'
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4.1 Laws of Diffused Reflection

Experiments on the impact by molecular or ionic beams on solid tar-
gets have shown that these particles undergo a diffuse reflection (scat-
tering). The number of scattered molecules per unit solid angle, in a
direction making an angle 6 with the normal to the surface, is propor-
tional to cos 8. This isthe law of Knudsen (Ref. 4), and is analogous to
Lambert's law in photometry.

L.2 (Calculation of the Accommodation Coefficient

The transfer of energy is characterized by the coefficient a, in the
absence of the screen, because of the reflected molecules (see Ref. 5).
It depends on:

(1) The ratio m/m', where m is the mass of an incident molecule of
air and m' is the mass of a molecule of the solid.

(2) The incident kinetic energy: %’mvg

The atoms at the surface of the solid exert repulsive forces which
decrease with distance. In the neighborhood of these atoms, the equipo-
tential surfaces, corresponding to high energies, are roughly spheres
which are concentric with the nuclei and have no common point. At greater
distances, the equipotential surfaces become one sheet. This sheet be-~
comes a plane when the distance increases.

The collision of low energy particles (for example, particles having
thermal speeds of 500 to 100 m/sec) involves only one equipotential sur-
face of one sheet; i.e., one corresponding to the resultant of the repul-
sive forces from several close atoms. The sum of the masses of those
atoms which contribute, during the collision, to the reaction on the in-
cident molecule is generally much greater than the mass of the latter one.
In this way, the molecule is reflected (or reemitted)with a weak loss of
kinetic energy. On the contrary, however, if the energy of the collision
is high (with respect to thermal speeds), the incident particle penetrates
further into the atomic lattice. It can be absorbed if its trajectory
nears the median plane between the two neighboring atoms. More frequently,
the particle is reemitted after having undergone one or several repulsions
from the electronic envelopes from one or two atoms of the solid. In this
second case, since the mass ratio is much greater, the transfer of energy
from the incident molecule to the solid is more important.

In summation, the accommodation coefficient (coefficient of energy
transfer in the absence of a screen) "a" depends essentially upon: (1)
the atomic mass of the incident particle; (2) the mean mass of an atom
from the solid; and (3) the relative speed, which determines the number
of atoms, from the solid, which react on the incident particle.

T Doy
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The coefficient a is calculated by treating the problem of collision
between particles. In particular, the simple model of the central force
and completely elastic collision is attacked in Reference 2. More de-
tailed solutions of other models are found in References 5 and 6. Note
that a depends on two other factors: (1) the angle of incidence of the
collision, and (2) the surface roughness.

1 - .~ —~ B P —~ P A T et o ~e =< =< >
4.3 Values for the Accommodation Coefficient

a) Stony Meteorites

Their composition is a mixture of iron and manganese silicates,
iron, aluminum and calcium oxides. The mean atomic mass is of the same
order of magnitude as, or perhaps even smaller than, that of air: mn' £m.
The mean composition of a stony meteorite is given in Table 1 (Ref. 2).
The mean atomic mass is deduced for the solid phase; namely, 23. The
mean molar mass of air varies from 29 to 26 at an altitude of between O
and 200 km (ARDC, 1959). From the measurements of Van Voorhis and Compton
(Ref. 12) a mean value for a is 0.924 (for v = 35 km/sec and normal inci-
dence). Levin (Ref. 1) gives the values:

0.96 for v = 15 km/sec

a =
0.99 for v = 50 km/sec

8

mn

In summation, the molecules of air impart all their kinetic energy
to the meteor during the collision. The speed of the reemitted particles
is relatively low (i.e., of the order of 3 to 6 km/sec) when v varies
from 10 to 60 km/sec.

) Iron Metecrites

Iron meteorites are composed of iron + nickel, with the percent of
nickel varying between 5 and 50 percent, with an average of 9 percent.
The atomic mass of iron is 56, and of nickel it is 58.7. This is clearly
the case of mem'. Van Voorhis and Compton (Ref. 12) give a = 0.650 (for
normal incidence and v =35 km/sec). The values calculated by Levin
(Ref. 1) are slightly higher:

for M= 29 (to within 1 percent, from O to 120 km) a
for M = 24 (z = 250 km) a

nu
o
-3
=

We shall take an average for a = 0.75.

Thus the air molecules transfer 75 percent of their energy to the
iron meteorite. The speed after reflection is half the speed of the in-
cident particle. ‘

Tyvpes by s -




k. i Distribution of the Energy

In the absence of a screen, the kinetic energy lost by the air mole-
cule is completely transferred to the meteorite. We therefore have:

A= a

5. Screen Effect

We say that there is a screen effect if there is a collision inter-
action between the incident air molecules and those which are reflected
by the meteorite. This effect becomes greater as the flux of the inci-
dent and reflected molecules becomes more intense. Therefore, the effect
increases with: (1) the product pv, which represents the flux of inci-
dent molecules; and (2) the size of the meteorite, which conditions the
flux of reflected molecules.

Suppose that a beam of molecules moves toward a meteorite, which for
simplification we shall assume to be a circular-plane target. Consider
a molecule which is just reflected at a point on this target and located
at a distance r from its center. If we suppose that the molecules are
reflected according to Knudsen's law (Section 4.1) it can be shown (Ref.
1) that the mean free path A(r) of this reflected molecule, inside the
beam of incident molecules, is given by:

i
A(2) = 2 a(0)f Jie(D)2sinlarda = 22L0) p(Z Iy
with 6 R T 2P

= fro

r(0) = 2R

where R is the radius of the right angle cross section, and E(¢, k) is an
elliptic integral of the second kind. In particular, for r = R, A(R) =

= 0.64A(0) = 1.28 R. The mean value of A(r),.as calculated for the whole
frontal surface, is

16

A= RTLTR (10)

In the first approximation, we can say that a molecule of air re-
flected by the target and having a speed v, and a mean free path A re-

mains in front of the target surface during a time:

g = > (112)
vI‘

N
"~
;
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If 1 cm2 of the target surface reflects N. molecules per second, there

are an average of N6 reflected molecules in front of the target. These

form = screen, whose total surface area per unit of target surface area
is:

Z = N8-nd®
where d is the mean molecular diameter (4 = 3.7-10'8cm). From (10) and
(11):

- _ 16 2R

‘== N. d ;} (12)

The probability that a molecule is not stopped by this screen is:

p(N,) = e (13)

This is in fact an approximate evaluation. In reality, the probability
that an incident molecule will cross the screen without being stopped by
the meteorite (which we shall call the transparency coefficient for the
screen, and designate by @) is greater than the p(Nr) given by (13). 1In

fact, after a collision in the vicinity of the meteorite the incident
molecule can reach the meteorite even though it is deflected from its
trajectory, and the reflected molecule can again be reflected back to
the meteorite. It can be shown that the transparency coefficient @ must
ave an expression of the form:
o =e B (1h)
where B is a coefficient less than one.

AThe number N.. of reflected molecules is given in the steady state
regime by:

N, = off; = of, (15)

where N = % is the number density of incident molecules in front of the

screen. Eliminating Z and N. from (12), (14) and (15), we get the equa-
tion for a: .

7 16 Rw
a = e?(p(— 3777 B“i.o%fa)‘ (16)

B Rl "

r'a “ 5o
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where

is the mean free path in free atmosphere. If the transparency a.is close
to 1, we replace (16) by the approximate eguation:

, .16 Rv _ 216 ., md% o - (17)
1-n0ac= 3V B A VL. T 3T 8 nv_, Rov :

a) Stony Meteorites. Take B = 0.2 (Ref. 1), &~ 1, v, = 3 km/sec

(Ref. 1). We shall admit that the screen effect is negligible if for ex-
ample 1 - @ < 0.1. For this to be fulfilled, and from (17), we must have:

L
R 1210 -
—io < — —or Rpv <10 3, or z » Zmin(R)-

Table 2 gives, as a function of R and v, the altitudes zp;, above which
the screen effect by the reemitted air molecules is negligiblel.

b) Iron Meteorites. The air molecules are reemitted with greater
speeds than for stony meteorites. We must therefore expect a weaker

screen effect here. From (9) v, = v¥1 - a. Equations (16) and (17) be-
comes

a = exp( “j7“'7z:~\fl- a ) - (18)
log = -6 8 B ﬁﬁé 8 rdkg (19)
e % 3L/ Ji-d A, T 37 Yl-a n ¢

Take for example B = 0.2 and a = 0.75. To have 1 - @ <« 0.1, we must have
(R/Ao) < 0.21, or z > zy;,(R). Table 3 gives, as a function of R, the

altitudes Zmiﬁ above which the screen effect is negligible (xo(z) from

ARDC, 1959). The altitudes at which the visible meteors make their ap-
pearance (in other words the altitudes of the start of vaporization)
vary roughly from 80 to 90 km for speeds less than 25 km/sec (region of

Iro(z) from ARDC, 1959.

= 1
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low speeds), and from 115 to 125 km for speeds greater than 40 to 45
km/sec (region of high speeds).

Conclusion

The screen resulting from the reemitted air molecules is weak before
the start of vaporization for millimetric or lesser stony meteorites; in
other words, for most natural meteorites. The resulls of Section 4 can
therefore be applied to these meteorites.

6. Sputtering of the Meteorite Molecules by Impact

The sputtering ("arrachement" in French, "Zertstaubung" in German)
of the meteorite molecules by impact is a phenomenon which makes its ap-
pearance, before vaporization, at the first collisions against air mole-
cules. Each air molecule encountered by the meteorite produces at the
surface an intense heating which is very short, and is localized to the
close vicinity of the point of impact. A sputtering of the meteorite
molecules results. The phenomenon has been studied by analogy with the
bombardment of ions on a cathode (Ref. 13).

Let v be the mean number of sputtered molecules caused by an inci-

2
dent molecule during the collision, ¢ = ag%— the energy transferred to

the meteorite by an incident molecule, and u, the sputtering energy of a

o
molecule (u, = 6.10712 erg = L ev). Tt was found {Ref. 13) thal:
b=k (8 )43 (20)

vhere k is a characteristic constant for the material. For iron,

k = 7.10-h, and for a stony body, k = 10—2. For v comprised between 10
and 70 km/sec, we obtain:

0.1 <y<10 (stony meteorites)
0.00k < v < 0.6 (iron meteorites)

By definition, the coefficient of energy transfer by impact sputtering is
the ratio:

Ay = Efe (21)
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where E is the secondary energy necessary for the sputtering of the mole-
cule. Tt can be shown (Ref. 1) that:

T
A= 2 (S0 vt cgs

6

For a stony body, Aa,é\’ 4-3107", and for irom, A o= 2.5-10'7. For v

a,
n/sec and TO km/sec, we have
stony body L <« A, <1k percent

iron 0.3 € A; < 1 percent

Therefore, the total sputtering energy E always remains small as compared
with the collision energy & transferred to the meteorite. Very low val-
ues of A5 have been observed for various metals.

We can write an equation for the decrease of mass by collision sput-
tering analogously to (6), with the additional_use of the relation A= aq:

J— S R

(22)

where Q5 1s the specific energy (per gram) of impact sputtering. For
. 11 -1 . .
iron, Qg = 1.8-107" erg-g™ (Ref. 1). TFor stony bodies, Qg is of the

same order of magnitude., This is the numerical value which is used for

b T R R
all meteorites.

6.1 Numerical Values of the Drag Coefficient I' (taking into account the
incident molecules and the molecules reemitted and sputtered by im-
pact)

The mass of air incident on the meteorite has a steady momentum alge-
braically equal to:

ar-d M'ev

where @ is the transparency coefficient for momentum transfer. The re-
emitted air molecules have a momentum whose component along the direction

of ¥ is:
- aNk'dM' VI'




1k

With Qyy being the transparency coefficient for the transfer of the number
of molecules, and k being a numerical factor related to the space distri-
bution of reemitted or sputtered molecules (scattering law and shape of
the surface). The molecules removed from the meteorite have az momentum
whose component along the direction of ¥ is:
- kedMevy ,

from which the equation,

FAM'v = qpdM'v + qyk-dM'vy. - kedM.v, . (23)

From (22)

from which,

(2k4)

Determination of k

Take an element do of the frontal surface area S, whose normal makes

R .
an angle 6 with v (Figure 3). The mean normal component of the velocity
vy, of the molecules scattered (according to Kuudsen's law) by a wall is

equal to (2/3)*v,. (Ref. 4). The component along the direction of ¥ of
the momentum of the molecules reemitted by the element dg is:

2 do 2
§ dMm: 5 vy, cos’ 8

Integrating over the frontal surface S, we obtain:

o .2 amr . ) i
. t = T e (i}
kedM v. 378 VrJAZ%OS

]

- 2 2
k =33 jf“s ®do | (25)
s

vhich gives k = 2/3 for a plane surface of incidence and k = 4/9 for a
spherical surface of incidence.
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When the screen effect is small, it can be shown that ap = ay =Q,.

For most natural meteorites, the screen effect is negligible qp = =
@, = 0. Equation (2L) beccmes:

ooV
o RS
s

(26)

Two cases must be considered.
a) Stony Meteorites
axl; vo=lh km/sec; ag o = 5107%; q, = 1.8-10'1 erg-g~L

v 3 km/sec for v = 10 km/sec, for example

I

T

v

= 6 km/sec for v = 60 km/sec, for example

H
!

We obtain, for the three rI's:

r=1+0.20 + 0.03 = 1.2 for v = 10 km/sec
r=1+ 0.09+ 0.18 = 1.3 for v = 30 km/sec
Fr=1+0.07+ 0.60 1.7 for v = 60 km/sec

The third term for I is because of the impact sputtering, and
predominates only at the high speeds (v 2 40).

b) Iron Meteorites

vy = vV1 -~ a; Equation (24} becomes:
- . - .
‘ ah ‘ '
i 1 a,o ﬁ
p:1+k,/1_a+-2-k—-—é-=-—vav5 (27)

awD.T5; V, =k km/sec; Aa,o = 2.5-10"7,- Qg = 1.8-10 erg-g'l

T=1+ 0.33 + 0.001 = 1.3 for v = 10 km/sec
F= 1+ 0.33 + 0.03 = 1.35 for v = 60 km/sec

I'is practically independent of the meteorite speed v. The
third term for r is because of the impact sputtering and is always negli-
gible.

I le
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6.2 Variation of the Mass by Impact Stripping

For the decrease of mass, both sides of (22) are divided by the de-
celeration equation (5). If the screen effect is assumed to be wesk or
nil, the a coefficients are practically the same, and are eliminated from
the resulting equation. -We get:

T N tT Tl T TR,

W 3

= M exnl—2 2502 (.8h_ 8By1- (55)
M= M expiTg ~?3i= }v.[- Vok)}? (28)

with I being independent of v; and with My, vy being the initial values.
Mo - M

. aM i AV
Table 4 gives the values for /— = ———— as a function of 7o for
o]

Mo Mo

stony and iron meteorites, and for three values of v,. In practice, the

decrease of mass by impact sputtering is negligible for ion meteorites,
except at the very high speeds.. The decrease of mass is even more sig-
nificant for stony meteorites. These values are calculated by taking

1 1

=1, Qg = 1.8-10% ergeg ; Ay 0 = 4-10'6 (stony meteorites) and Aa,o

= 2.5-10_7 (iron meteorites). In practice, I increases with v for stony
meteorites, and the residual masses are slightly greater at high speeds
than those derived in Table L.

6.3 Variation of the Speed by Impact Stripping

From equations:

av o

(5) Mzz=-T pS v, where p=p(2), v=v(z)
_ z-h
(3) p(z) = Py © By
dz = - v cosy dt where ¢ is the zenith of (29)

the meteorite radiant,

we obtain, assuming M constant (see Table 4), T constant (see the previ-

ous) and S constant:
’ _ T-Hh g *
v(z) = v exp |- o557° ¥p(z)

(30)

L /L«j
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For Av = v, - v, not too large (which supports the fact that M is con-

stant):

(31)

S _ A -
s’ﬁ"&Tlels

with A = the shape factor of the meteorite, and with § = the density of
the meteorite.

For similar bodies, S/M :~M'l/3, hence, Av/vo (not too large) is in-
versely proportional to the size of the meteorite. The values of Av/vo

were calculated for r= 1, &= 3 g/cm3 (stony meteorites) ¢= 0°, p(z)
according to ARDC, 1959, for several values of R, and are listed in
Table 5.

In summation, the decrease in speed, resulting from impact sputter-
ing, is very small for all meteorites, except for particles of the order
of 10, or less. The decrease of mass, resulting from impact sputtering,
is also generally very small.

7. Heating of the Meteorites Before Vaporization

To treat this problem we consider: (1) meteorites of very large
dimensions (at least of the order of a few millimeters), which heat up
only superficially (see Section 7.1l); and (2) meteorites of smaller dimen-
sions, whose total mass heats up almost uniformly. This second case is
that of most natural meteorites (see Section 7.2).

T.1 Meteorites with Nonuniform Heating

During the heating up process of meteorites, temperature is not uni-
form, and a heat flux is therefore established; this heat flux goes from
the (instantaneous) frontal surface to the back surface. We shall later
show (Section 7.1.3) that the minimum dimensions of such meteorites are
about 1 mm for stony bodies, and a few millimeters for iron bodies.

We neglect, with respect to the energy received by the meteorite,
the thermal radiation of the meteorite and the energy spent by the impact
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sputtering. We assume that the screen of reemitted air molecules is
transparent enough for us to take @~ 1, from which A = a. From Tables
2 and 3 we must satisfy the following:

R ;:5 mn (stony meteorites), and

R &5 cm (iron meteorites).

We have seen that, for these bodies, we can take v = v, = constant, up to
the start of vaporization. By applying:

z-h
(3) p(2) = ppee  n h$z
and _
(29) z = 25 - V, COS{t

we obtain the flux of energy received per unit surface area of the mete-
orite (zO is an arbitrary altitude corresponding to t = G):

1. We consider the simplified case of a cylindrical meteorite,
whose permanent surface of incidence is a right angle cross section (Ref.
14). We assume that the back surface is at the temperature of the sur-
roundings. This leads us to the problem of the propagation of heat in an
infinite bar. Let:

0(x,t) be the rise in temperature from the initial value (ambient tem-
perauure), at the pr\wn"" of ahgeisgsa ¥ (frontal surface at
X = 0), and at time t.

k be the coefficient of thermal conductivity of the material, and
X be the coefficient of thermometric conductivity.
X = k/3Cy (33)

where 8 is the density of the material and Cp 1s its specific heat. The
thermal conduction equation is:

38 a2e - '
Ll oxE5 =0
T o (34)

with the conditions,
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The solution is well known. We obtain:
. | x
Xo - %
8(x,t) = = w(t) e "o

_=08(0,t) 7%

with
x, =
(35)
The rise in temperature of the surface of incidence is:
*o
, 8(0,t) = =2 W(t)
from which, . ‘
8(0,2) = 20 W(z) .
0(0.z) = L o X /L E ZozZ
{e(O,z) =2 %% cos; vgllzp(z ) exp 5
ey %o
8(0,z) = z 2% cosg v5/2 p(z) K W(z) (36)

Numerical values of X, (Ref. 1):
a) Compact stony meteorites:
k ~3.10° erg (cm-sec-degree)™t
Cp = 107 erg (g-degree)™t
§ =~3.5 g/em’
| from which,
\ X=20.9-10"2 cm®s~1
b) Porous stony meteoritess:
o~ L -1
k <= 2.10" erg (cm.sec.degree)
Cp o 107 erg (g-degree)~t
5 =1 g/emd

from which,
X 222,107 3. cn®s 1
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c) Iron meteorites:

k =~ 3°106 erg (cmesec-degree)™l (at 800 ()
Cpe> 7-106 erg (g-degree)'l
i = 7.6 g/em’
from which,

Table 6 shows the values for Xys deduced from the previous numerical

values obtained from (35) (for = 0° and H = 7 km), for three values of
Vol

Xo < 0.5 mm for stony meteorites,
Axoé 1.5 me for iron meteorites.

2. We consider the case of a meteorite in rapid rotation, with
dimensions »X,. We can assume that the center remains at the initial

temperature. Assuming that the thermal radial flux is uniform over all

of the surface, and referring to the preceding case of the semi-infinite
bar, we obtain:

Opot(0,2) = % 6(0,z) with 6{0,z) given by (36).

3. We consider the case of a meteorite of dimensions comparable
with x,. The method of images {Ref. 7) permits us to proceed from the

solution of the problem of the semi-infinite bar to that of a finite bar.
Let £ be the length of the bar. We find, (Ref. 1):

' 2
4 EN o
43 = :fe (O -’z) (1 + T
with 0(0,z) given by (36). X0 .

For example, for: 4= X 91(-3,2)

{= 2x_,8,(£,2)

1

B
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Thus we can assume for -{ > 2x, that the back face does not heat up. X
is given by (35), and this condition is written:

¢ >1 mm (for stony meteorites),
¢ >3 mm (for iron meteorites).

The temperature of the impact surface of a meteorite is:

T=T,+ 0,
where T, is the initial temperature of the meteorite, 6 being given by
(36) or (37), depending on the case considered. The temperature of the
surface of impact of a nonrotating meteorite (0.5 < Rﬁ§-5 mn for a stony

body and 1.5 < R & 50 mn for an iron body), obtained from (36), is shown
in Figure 4 as a function of z, for ¢ = 00, and for v, = 15, 30 and 60
km/sec. For 40,

T(z) = Tolz) + SZ)

cost

The altitudes z(T), corresponding to the same temperature, for a
meteorite having a permanently plane collision surface, and for a spheri-
cal meteorite under rapid rotation, are about 10 km apart. The corre-
sponding altitude for a meteorite of analogous dimensions, but of any
shape is between the previous two extreme values.

Validity of Equation (36) is valid up to the vaporiz-

ation temperatures of compact stony meteorites, with Ty = 2300° to 25000,
and of iron meteorites, with T, = 2400° to 2800°. Equation (36) is valid
for porous stony meteorites, up to T = 1900° to 2000°; above these temper-
atures, thermal radiation becomes important.
7.2 Meteorites Having a Uniform Temperature

We can consider that the temperature of a meteorite remains uniform
if its dimensions are less than X4 (Section 7.1). In other words:

0.5 mm for a compact stony meteorite, and
1.5 mm for an iron meteorite.
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We shall also assume that for compact stony meteorites:

R »10 u

so that we will be able to neglect the deceleration of the meteorite be-
fore its vaporization (Section 6.3). All these conditions are satisfied
for most natural radio meteors.

(39)

Generally, the energy E(t) received is transformed partly into heat
and partly into energy dissipated by thermal radiation. We can therefore
write:

N

- QECt) _ art ' 4_ : t

]

where T is the temperature of the meteorite, T, is its initial tempera-

ture (temperature of thermal equilibrium with the surrounding medium), B

2

is the emissivity factor, o = 5.7]_-10'5 ergecm” sec-l degree_h, and S' is

the total surface area of the meteorite.

a) It can be shown (Refs. 1 and 2) that for particles of dimensions
less than 104 (micrometeorites), the radiated energy predominates. We
shall return to this case in more detail (Section 7.3).

b) For particles of dimensions greater than 10s (radio meteors),
the energy transformed into heat predominates over the radiated energy.
The temperature increase 6(t) is therefore given by:

o(t) - e
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or, from (39):

|

T e

1

h _S_ 2
cosg MC vs elz) (31)

B D

rol}—:

e(t) =

where Cp = 107 erg (g-degree)'l for stony meteorites, and Cp = 7-106 erg

| (g-degree)'l for iron meteorites.

7.3 Micrometeorites (Refs. 1 and 15)

By definition, these are meteorites of dimensions less than 10,.
From what was observed previously (Section 6), it is no longer possible
} to neglect the decrease in speed resulting from impact sputtering. The
w heating is given by (40), which becomes (with B = 1):

L ——Sgét)
™oty 2 £ R | (42)

Equation (42) shows that the rise in temperature is proportional to

4/\
Wl/q(t), and is no longer proportional to W(t), as for meteorites of
greater dimensions (Equation 36).

The condition under which we can neglect the first term of expres-

TG - L

sion (LO) for dE(t) is written, taking (39) into account:

» S N , . -
< A alyp 2 v :

Mo T(t) << ?/\W(t)dt " 2 Gosz Vo °. (43)

. el - —

By applying (42) and assuming Th>>ﬂrg , this condition becomes:

Hy, g’
9 Ccost M v, >>1 (1)

Example. Spherical meteorite: (45) %I- =

Ef&

-3 ichs
= 75 ? from which:

o Hn w3

R<<3
pi cosy Vv

(46)




24

If, in addition, the meteorite is a stony one:

s = 3.5 g/cmd Cp = 107 erg (g-degree)™t
T = T, 1700° K v, = 30 km/sec
Hp = 7 km = 0°

{46) vecomes: R << E0x.

During the entry of the meteorite into the atmosphere, the increase
of temperature, which is related to the increase of p, is followed by a
decrease, because of the decrease of v. For sufficiently small particles,
the maximum temperature reached is less than Tp. From equations (30) and
(42), we obtain:

T }ﬁd S

T TH = Tg + % % = vg pexp (- 3 (47

e

The values of 'F can be calculated by means of (47), assuming that the de-
crease in mass resulting from impact stripping is negligible, and that T
is constant (which is a valid assumption except for very rapid stony bod-
ies, where v > 50 km/sec). These values are shown in Figure 5 for spher-

ical stony micrometeorites (&= 3 g/cm3; r=1; a=1; ¢ = 0°).

The altitude corresponding to the maximum temperature (given by p):
dT/dp = 0

.

max TR, S (18)
’V(Tmax) = v S8 =0,72 v (49)-
e e 6 20 B2 * o
o
The inequality Tmax é;&% defines a maximum for R, by using (18):
iR <18 e 3 Sost ;gz = Rmaxi (Tf: fusion (51)

temperature)
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The particles with R < Rygy (T¢) are the micrometeorites of Whipple (Ref.
15). The values for Rpax 20d pCRmax) are indicated in Table 7 (for stony
particles, #= 3 g/cm3, a =1, r=1, Tp = 1600° K, and for ¢ = 0°).

Figures 6, 7 and 8 show the essential results for the study of:
(1) the transparency of the screen due to the reemitted partlcles, (2)

2 g A ~ 2 . N 2o
the decelcration of the meteorite before vaporizati ion, and \3) the heat-

ing up of the meteorite before vaporization.

8. Vaporization of the Meteorite

We have seen (Section 7) that meteorites of dimensions greater than
104 keep heating up while they descend through the atmosphere. Starting
from a certain altitude, they reach their temperature of vaporization.

8.1 Calculation of the Parameters which Characterize
the Vaporization

The vaporization of a solid or liquid is characterized by two quan-
tities: N, the number of vaporized molecules per second per square cen-
timeter of area; and p, the pressure of saturated vapor. It can be shown
(Ref. 1) that p is given by:

2w e kT’ N
m' b

where m' is the mean molecular mass of the meteorite, and b is the stick-
ing coefficient (fraction of the condensing vapor molecules incident on

1 cm® of the body); b = 1 for metals (Ref. 9), and B < 1 for stony mete-
orites.

Overall Specific Energy of Vaporization: Q

This is the energy necessary to raise the temperature of 1 gram of
a solid body for its fusion and its vaporization.

LO 3
Q=(7(2'—+‘2'kT

v

i

where L, = 93,000 calories (mole)'l is the specific heat at 0° K, c/{ the

=L I L Y A U URUIEU S ———

fraad by, Lo”

tigns typed by
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molar mass of the body, and T, its temperature of vaporization. We find

Q = 7.5-1010 erg-g‘l for iron. We take (2): Q = 8.08.101° erg-g'l for
stony meteorites. We shall use the following average value:

Q = 8-10%0 erg.gl ,

for the whole set of meteorites.

Boiling

When boiling takes place, all of the energy received is used by the

vaporization. The mass Nym', vaporized per cm® per second is given by:

Na' = § =54 e SN G

The pressure of saturated vapor is, from (53), given by:

7% pv3j (55)

The boiling starts when the saturated vapor pressure p is greater than or
equal to the aerodynamic pressure,

P= T'p‘V2 (56)
which is exerted on the meteorite. From (55) and (56), the condition

p & P becomes:

m' 52 .
T2 99kt (57)

The right hand side represents the boiling temperature of the meteorite.
Remember that:

£= e - (58)

We shall see (Section 9) that we can adopt the following average value,

g = 2.10°12,

a) Iron Meteorites: b = 1. We deduce from (57) that:

ead by

Typed by /

Y

reatread by

[

- 1o
orrections fypec oy



T > 12000° K if v = 15 km/sec
T » 3000° K if v = 30 km/sec
T > 750° K if v = 60 km/sec

Boiling is impossible at speeds approximately less than 30 km/sec.
b) Stony Meteorites: b < 1, but its value is poorly known. We can
simply say that boiling always takes place at the very high speeds.
8.2 Vaporization of Millimetric or Greater Meteorites
a) Iron Meteorites

At equilibrium between the liquid and vapor phases, we have
(Ref. 16):

loglop = 13.53 - 21;00 in c.g.s. . (59)

The total vaporization energy QNym' (in erg-cme/sec) is, from
(53) and (59):

21400

1
logyo(QNym') = 20.93 - 5 logioT - =%

(60)

Q ~ 8.1010 erg-g~t.

we show

8

, as a funetion of T, the values of:
QN m' from (60);
W(T) from (36), taking ¢ = 0°, Hy, = 7 kn
T =0+ T, (T, initial temperature
of the meteorite), a = 0.75
Remarks

1. When QNym' becomes a sizeable fraction of W, the screen re-

sulting from the vaporized molecules is no longer negligible. Equation

(36;, as established for @ ~ 1, is no longer applicable (see the follow-
ing).
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2. Table 8 is established for a meteorite having a permanent
plane frontal surface. For rotating bodies, the same temperatures are
reached for greater values of W(z); therefore, for lower altitudes (by
10 xm approximately).

b) Compact Stony Meteorites
In the absence of data on the vapor pressures of stony bodies,
we have to take (59) and (60) as being applicable to these bodies (the
mean molar masses of stony and iron meteorite vapors are almost the same).
Table 8 gives, as a function of T, the values of:

QN from (60); and

w(T) from (36), taking T

]

6+Ty; a=1

£

L]

0% Hy = 7 lm
Because of their lower thermal conductivity, the stony meteor-
ites reach the same temperatures as the iron meteorites at greater alti-
tudes.
c) Porous Stony Meteorites
Before the start of vaporization (1500 <« T < 2000° K), thermal
radiation represents a sizeable fraction of the incident energy of the
air molecules. The subseqguent increase of the flux W entails an increase
in vaporization whose energy becomes greater than the radiated energy.
Variation of the Temperature as a Function of the Altitude
Figures 9 and 10 show examples of variations of the meteorite temper-
ature T as a function of its altitude z, during the two successive phases

of heating (Section 7) and intense vaporization (Section 8).

a) During the heating period. The rise in the temperature 8 was
calculated from (36). We have assumed § = O, Hy = 7 km, and the values

for k and X are given in Section T, those for a are given in Section 4.3.

b) During the vaporization period. The function of T versus z is
obtained by writing that the energy QNym' necessary for the vaporization,

and given by (60), is equal to the energy supplied to the meteorite.

Ty

’
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Altitude of Appearance of Meteors
In practice, these are the altitudes where an intense vaporization

is initiasted. From (36) and (3), the rise in temperature of the surface
of incidence is written:

z—h-

H - i
1 _ vV / h 3 H f . (61)
(z) = = a2 ¥ 5 N
8{z) 5 2 Vcosa videp. e h

Let z, be the altitude of the start of intense vaporization. We have:

/o |
5 1
a vy + —logvo-flogcosc{[ (62)

1V st) = hE {log(s ¢ @ 2

From Figures 9 and 10, we have 2100 < T(zl) < 2800° X (70 to 90 km < zq

< 100 to 120 km). Roughly, 1800 < 6(21) < 2600° K. Remember that the

thickness of the layer where the meteors start to be visible was esti-
mated to be 10 km. Figure 11 and Table 9 show: +the calculated altitudes
of the meteor appearance layers (vertical trajectory, homotropous atmos-
phere Hy = 7 km); and the altitudes of appearance of sporadic meteors and

of the principal showers (Refs. 20, 29 and 30).

8.3 Vaporization of Submillimeter Meteorites

These meteorites have practically a uniform temperature, and com-
pletely melt before the vaporization takes place. Figure 12 shows curves
T(z) for iron meteorites, for v, = 15, 30 and 60 km/sec and R = 100 «,

104 and 1,.
9. Screen Due to the Molecules Vaporized from the Meteorite

The transparency coefficient a is determined with the same method as
for reemitted air molecules (Section 5). However, the essential differ-
ence between the two is that the transparency cannot be close to unity
(¢ 2 0.9) unless the meteorites have dimensions definitely less than a
millimeter (R éclOOn). For the rest of the meteorites, it is no longer

possible to make the approximations of the weak screen, which were per-
mitted for the reflected air molecules.
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From (54), the number of molecules vaporized per square centlmeter
per second is:

,‘ (63)
where &, is the transparency coefficient of the vaporized molecules for

the flux of energy and m' the mean molecular mass of the meteorite.
Equation (15) becomes:

where d' is the mean molecular diameter of the meteorite and VT is the
speed of the wvaporized molecules.

RpV3a )

a, = exp ( - %.B(A) a 'Qv . (64)

A

We have taken B = B(A), since the collisions modify the space distribu-
tion of vaporized molecules while the screen becomes denser. This is an
unknown function, and (64) cannot be used to determine Qy-

Condition for the Screen Effect to be Weak.

If the screen effect is weak, (64) becomes:
arz o

8
1 - g 82 gy, Rev? (65)

where B is no longer dependent on A. For a stony meteorite g ~0.2.

itha=1; d' = 3-10-8 cm; m' = 82-10'21L g; Q = 8.1010 erg-g'l; and
o = 1.5 / sec the condition @ » 0.9 is written:
Rev3 < 2-10° (66)

On the other hand, the vaporization of spherical stony meteorites less
than a tenth of a millimeter in dimensions is established at sbout

T = 2000° K; in other words, from (42), when pv3 2 10%°.

™y
;
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These last two inequalities are simultaneously satisfied forl:
R < 0.2 mm.

We can therefore say that the screen effect is weak most of the time for
the natural meteorites which are observed by radio means.

Numerical Values for the Drag Coefficient I’ in the (Case
of a Weak Screen (o » 0.9)

We operate in the same way as for deriving equation (26). Neglect-
ing the impulse of the molecules removed by impact, we obtain:

v
Pca-(l+k——§+—é—k%v,rv) (67)

where v, 1s the speed of the reemitted molecules, and Vi is the speed of
vaporized molecules.
a) Stony Meteorites
R 10 -1
With the values vy ~ 1 km/sec; Q = 8+10"° erg.g™~; a o 1;
vp e 1 km/sec; k 22 0.5; equation (67) becomes:

0.5

r=c-(1+ =2+ 3.107° v) ~ (1l + 3-1072 v), (68)

where v is expressed in kilometers per second.

1A calculation similarly performed for meteorites of greater size, using
(36) instead of (42), shows that the transparency « is weak from the be-
ginning of the vaporization. Table 10 gives values of @, as a function

of pv3, for two values of R. 1In reality, the values of ¢, tend to be

greater than those indicated in Table 10. Indeed: a) The right angle
cross section S generally decreases during the vaporization. b) The col-
lisions of the air molecules against the vaporized molecules increase in
number and create, on the average, an increase of the temperature of the
cloud, and therefore an increase in the speeds of the particles which be-
long to this cloud. c) The mutual collisions between the vaporized mole-
cules lead, on the average, to an increase in the time of flight of these
molecules in front of the meteorite.

.‘,“‘~
TR
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b) Iron Meteorites
With v, = v-¥1 - &, and the values a =~ 0.75; k= 0.5; Q = 8,100
erg.g=; Vp 221 km/sec, equation (67) becomes:
r~a-(1.25 + 2.10°° v), (69)
where v is expressed in kilometers per second.

Relations (68) and (69) assume that the transparency a is fairly
close to 1. When the conditions of the motion were such that the screen
was a dense one, the numerical values of I and A were obtained from pho-
tographs of meteors or of hypersonic projectiles (Refs. 17 and 18). Ex-
perimental values of It

Meteorites Faverage = 0.5 (Ref. 17)

Iron or
aluminum
projectiles Tayerage = 0-42 for v & 6 km/sec (Ref. 18)

Experimental Determination of the Parameter £ = A/2rQ see (7)

The photographic observations of meteors do not make it possible to
obtain I' and A separately. Since I' varies within a relatively narrow in-
terval only, § is determined by observation, then, knowing @ from labora-
tory measurements, A is calculated. The luminous intensity of a meteor
is taken from the relation:

ol -
22
<
\s

I=-q (7o)

where T = 1(v) is a luminosity factor. For simplification, the residual
mass is assumed zero when the meteor disappears. Equation (70) becomes:

o r—— —

-t
2
M = 8T %ﬁt—l dt: (71)

t §

where t, is the instant when the meteor disappears. Combining (7), (70)
and (71), we obtain:
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) I(+)
¢ t
3dv I(t) .
ViR | ™ 9t (72)
t2 i

Here, v and dv/dt are determined from photographs taken at two locations,
with an objective equipped with a rotating blade shutter (Ref. 8). In
the first approximation, we take T (v) = constant. Another very simple
expression is 7 (v) = 1 _v (Refs. 19 and 20).

From photographs of 36 meteors, Jacchia (Ref. 19) was able to ob-
tain 55 values for £ (there are several measurement points on the same
track of certain meteors). That author finds:

logE= - 11.75; F=1.8:10722 (5.10713 < ¢ < 4.10719)

Taking Q = 8-10'° erg.g™!, r= 0.5, the values A = 0.32 and A= 0.0k to
correspond to the measured extreme values of §¢.

We shall sum up the various results from the photograph observations,
which were compared with laboratory measurements and with calculations,
taking the following average values:

(1) for meteorites of more than 10 cm (small fireballs) A20.05

(2) for meteorites of the order of 1 cm (very bright visual meteors)
A=20,15

(3) for meteorites of the order of lmm (ordinary visual meteors)

A=~0,3 to 0.5

(4) for smaller meteorites (most radio meteors) Ac~g

Influence of Aon T
From (67):

V.
rma(1+k§+lk§

1
5 QvTv)_r + 35k

1 A
(1 + 5 k T3 Vop v)

]
"3
(o]

Consider a stony meteorite:

qQ = 8.101° ergeg™L; vp ~ 1 km/sec; k == 1/2; Ty~ 0.4 from which, express-
ing, v in km/sec:

vped by

T

¢
Frootren
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T ~0.% (1 + 8:107° av) (73)

I increases with v, but the decrease of o, and therefore of A, with the
speed (16), (64) limits the T variation. This can explain the choice of
the value r = 0.5 which is used in a great number of meteor problems.

10. Motion of a Meteorite During Vaporization
10.1 Relation Between the Mass and the Speed (A, T constant)

From (5) and (6) we have (Figure 13):

M(v) =y exp(- § (F - v2)), (74)

where Mi and v, are the values at the start of vaporization. We have

seen in Section 6 that the decreases of mass and the speed resulting from
impact sputtering are very small, except for rapid particles of dimen-
sions less than 104 approximately. We therefore have for most visible
meteors (observed with a radio):

My =My;5 v = vy

Equation (74) becomes:
-
o

M(0) =My e 2 (75)

v = O means cancellation of the initial speed, neglecting gravity.

In reality the decrease of mass, which is because of vaporization,
stops before v becomes zero. The residual mass Mp.og 1s greater than M(0).
We have

*2
v
Myes = M(0) e (See Figure 13)
0-12

o e

For example: for vo 5 to 6 km/sec and § = 2.1

we have Mpoq =~ 1.30
M(0)*.

*Because of the uncertainty involved in the numerical data, we can esti-
mate that the difference between M(0) and Mpeg is small, and can be re-
written Mpeg == M(0).

Y
L
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M(0)

M, as a function of Vo for two values

Table 11 gives the values of

of §. DNote that for big meteorites (R » 10 cm), ¢ is smaller (75) and is

of the order of 10-13. The residual mass is therefore much greater (for
vo = 30 km/sec, M(0) & 0.6 My). Figure 13 also shows that the vaporiza-

tion of most of the initial mass takes place while the speed has only de-
creased from vy =~ V4 by a few kilometers per second, especially when v

-12)‘

(o)

is large (calculations carried out with ¢ = 2.10

10.2 Relation Between the Mass and the Speed (A, T variable,
screen of small density

From Section 8, the condition of a screen of small density is ful-
filled only for sufficiently small meteorites (R & 1004).

From (5), (6) and (67), we obtain, after calculations, the equation:

dM _ 7 avdv

H T 2Q(1+k/1-d) + kavpv ' (76)
which yields, V-V 20 (14K v/T=3)
MeMe kvp Q(1+kvl-a)+akv,v akzv% -
o 2Q(1+k/1-a)+avav

Since the decrease of v is relatively small during'the greatest part of
the vaporization, we can take:

_ (Vo=V) Vv

M =M, exp (- 2Q(1+k/1-a3+avav)

Figure 1L shows also that a sizeable decrease of the mass takes place for
a small decrease of v, from v, ~ vy (curves plotted for stony meteorites,

0 erg'g-l, k = 1/2, and Vp = 1.2 km/sec).

vo-v<<l§(78)'j

a=1; q=8.10"
10.3 Relation Between the Mass and Altitude: A) A = constant
approximation

The hypothesis A = constant, applies also to meteorites having small
dimensions and a negligible screen effect, which leads to (Section L.k):
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Ax=a

where a remains close to 1. From Table 3, the approximation applies to
most meteorites observed by radio means.

In addition, we must propose another hypothesis on the relation
which relates the decrease of mass M with that of the right angle cross

section S. In the simplest case where the meteorite remains similar to
itself, we have:

S _ (¥ 23
50 = (B, )7
We shall assume that we generally have a relation of the form:
S M
2 = (= (79
SO MO ) 2 )

where the exponent u remains constant for a given meteorite during its
motion.

Taking (79) into account, equation (6), which gives the decrease of
the mass M with the time, can be written:

S
T = - ETgg e (80)

where the A = constant hypothesis entails § = constant. However, M and
v are related through relation (7&), derived before:

(74) M = M, exp -[§2- (vg - v2)]

Eliminating M from (74) and (80), and applying (3) and (29), we obtain
the function of v versus the altitude z:

z-h
L1y (v2av2 = E
’exp( 2(l u)(Vo v )l - T'So ) Hh
= av = T cost p(h) e dz ' (81)
. o ] N S .
Integrating this equation with Vq XV, We have:

o | G-w) s
1o 2 Oty v2)- mi(ST v2))e

(82)
rSoH

- _oh -
= MOCOSC(°<Z) p(zl)]
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xeu
where Ei(x) is the exponential integral function: Ei(x) = + du

oo

Relation (82) gives v, and M can be deduced from it by using (74).

A much simpler approximate expression for M can be obtained by re-
marking that the greatest part of the mass is vaporized while the speed
has only decreased a few kilometers per second with respect to its ini-
tial value vy =~ v,. Taking ve vy = v, integrating (80) yields:

M.1 ETVE S, )'E (83)
(ﬁ) “Hz ] - (1l-u) EBEE—'E— Hh (p(z) - p(zl ) 3
O o ) A B

In the case of a meteorite which remains similar to itself, x = 2/3, and
(83) becomes linear with respect to R and p:

r H (81)

h
= - 2 -
R Ro gvo t8coszg (p(Z) p(Zl)).

Altitude Zo Corresponding to the End of Meteor Visibility

) If we assume a constant speed during the whole evaporation (see the
previous), we find from (83), and by taking M = O: '

"Mocosc
— )
(1 u)EvoTSOH

p(zz)ﬁ; plzq) (85)

h

For example: spherical meteorite (constant A):

' ’ 48R, coSL
p(z,) - o(z)) = —E;Q?g-s"

o)

We also deduce from (80) the altitude zyy corresponding to a maximum speed

. . dM
of vaporization It - We obtain (still using the hypothesis v = vlcz.vo):

. M costg
- o) (86)
p(zM) = (1~-u) p(zl) + E;Zngﬁ;

!"
sy
P - .

tvnen Sy
YRl UY

Prootrend by
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Then, from (83) and (86):

-

.Ml-u - yl-u + (1=y) _E_El,é .S.g- H (z ) where M,=M(z,) ‘(87)
M 'ulo o o COSCMS hp 1 ‘M. ﬁ'.

For erdinary visual meteors, or for very bright ones which have a suffi-
ciently long train, we can take (2))s<<p(zy). We have:

(s = MOCOSL _ (88)
P’ T Tvirs H
1 o oh
MM = ul-u Mo where from (80) (89)
—_
@ . _.1l=u Movocost. (90)
dt'max o Hy

Finally, (85) and (86) show that in most cases z, and 7z, are related by:

P(ZM) = (l‘ﬂ) P(Zg):

which, from (3), gives:

1
M T 22T Hh loge - ° (91)
In particular for 4 = 2/3:

ZM - Z2= 1.1 Hh.

10.4 Relation Between the Mass and Altitude: B) A variable

For meteorites of sufficiently high mass, the screen effect cannot
be neglected and A must be considered variable, Using the method of the
least squares to a series of experimental resultis obtained by Jacchia
(Ref. 19), we obtain the empirical relation:

g%
 M%BT

,a=0.10, B=0.27, T=1.32 (M, p and v in c.g.s.).

3 (92)

with §¥ = 8.10"8

On the other hand, if the screen effect is sufficiently large, T
can be considered constant. With the hypothesis of (79) and (92), the
ablation equation (80) becomes:
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S .

(93)
- O -
Taking the same simplifying assumption v = vyoe v, as in Section 10.3,
we haver
Hyleyta 1= (1-pta)ie Y _.S.o'.’ ) 1-3 -8, 3 ton
(Mg - "U o 1-3 rv . COS;Mé+u Hh(p (z)- » (Zl))(Qh)

Altitude Corresponding to the End of Visibility: Z5

Taking M = 0 in (94), we have:

1+
1-3(22) - ol-s(zl) + (1-8) cosr Mg

(1+u-u)g rv2=YS Hh (95)

This relation has a form close to that of (85). In the same way, we ob-
tain relations analogous to (86), (87), (88), (89), (90) and (915:

| e
1- ' 1-
P18z = Qramw)el Bz v —%T—“;W)f?sﬂi (96)

lta=-p _

Py

2~y

1+a-u E*PVO S Hy l -8
(u-a)M * (e tomw) (g cosan b ° (z) (97

o 1+g _
l-3 ; l-8 cosrMx

o] (z,) = . ) (98)

g gt Vs YSlo ‘ :
-1
My = (u--a:)l""""u M, ' (99)
' S ¥ G » 2
(Qﬂ) e = (1=g)(y~- )l+a°u E&ZQESEE
dt’'max = 8/tu~a H_ (100)

- 1 .
zy-2, = Hy Logl+u_u z 0,71 Hh | (101)

-y .



Lo

10.5 Deceleration of the Meteorite (constant I', A)

For the case where { is assumed to be counstant, we have already ob-
tained a relation giving v as a function of the altitude =z:

1.7 (1; : v<2> (1=y)v2 - (1-)v2f_
-2-'8 {Ei ETD___Q - Fi .§__2_L___}= ,
rS H
¢ h
- 9 1 - )
Mocos; (D(Z) p(Zl )
b4
where, u
Ei(x) = i— du

is the "exponential integral™ function.

Figure 15 gives the values of v as a function of z for a stony mete-
orite remaining spherical (u = 2/3), and having a vertical trajectory

(¥ =0), with Ry = 1 m, =3 g cm™S, ¢ = 2:10712 for 3 values of v,.

This example proves that the deceleration can be neglected most of
the time in the most luminous part of the train.

11. Meteor Luminosity (Refs. 1, 2 and 8)

The spectrum of sufficiently bright meteorites is essentially a
spectrum of rays due to neutral or ionized atoms of the meteorite; these
atoms being excited by collisions with the air molecules. The atoms and
ions identified in these spectra are, by decreasing order of frequencies:

Fe, Mg, Mg', Ca, Ca*, Na, si, si*, Ni, Mn, Cr, Al, Fe', H, N, O. A band
spectrum corresponding to atmospheric nitrogen No was also observed (Refs.
10, 21 and 22).

Since the thermal speeds Vs relative to the meteorites, of the
vaporized molecules are of the order of 1 to 2 km/sec (T = 2500O K), they
are small compared with the speed of the body itself. These molecules
form practically a monoenergetic beam through the atmosphere, because
their kinetic energies E are between approximately 15 and 1000 ev:

stony meteorite 16 £ ES 560 ev for 10 € v € 60 km/sec
iron meteorite 30 £ E€1050 ev for 10 £ v £ 60 km/sec
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The multiple collisions undergone by a vaporized molecule easily
provoke the dissociation, and then the excitation (or ionization) of the
neutral atoms and ions thus formed. See Table 12 for the dissociation
and ionization energies of various elements (Ref. 2). See also Brun in
Reference 2k,

Luminosity Equation
It is believed that the average radiated power of the meteorite in
the visible frequency band, between 4000 A and 7000 A, is proportional

to the decrease per unit time of the kinetic energy of the vaporized mole-
cules:

S 1,

I=-3r7 TV (102)
where T is the luminosity coefficient for the 4000 A to 7000 A band, and
dMm . . . 8 . .
It is given by the equatloq for the mass decrease (80). Replacing this

valve, we have:

-1 G W5 _ 1 0.0 Moos b
I = 215?;:— Mpv? = 21€T — Moeov™ = (103)
o

——

wheie £ = A/EIQ; is the meteorite density and Ay is the initial shape
factor.

The values of T, which were proposed by the observers, show a great

amount of dispersion: 10~ < 1 < 1072, Opik splits the T coefficient
into three terms whose values he calculates, for different conditions,
by using experimental results of quantum mechanics: see Reference 2,
Opik in Reference 10. These three terms come from: (1) radiation of
atoms which are excited by collisions with the air molecules, (2) radia-
tion due to the thermal collision of the vaporized atoms between them-
selves, and (3) thermal radiation of the meteorite.

For ordinary visible meteorites, only the first term is important.
Table 13 shows the fraction of dissociated molecules, and the first term
of 1, relative to the radiation due to collision excitation; both are a
function of the speed, and are for two very different values of the dilu-
tion coefficient (ratio of the meteorite density in the vapor phase to
the density of air) (2).
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The calculations are performed by taking into account the following
points:

(1) A collision of the second kind brings an atom from a certain
level of excitation to the ground level.

(2) The vaporized atoms of the meteorite, which are several times
ijonized, exchange e  charges with the air molecules. From this there re-
sult simply ionized atoms which can be excited by an energy excess of the
transformation. The weak radiation, due to these effects, is neglected.

(3) All the atoms coming from the molecular dissociation which is
triggered by the very first collision are assumed to have an initial ex-
citation. This assumption is largely Jjustified for the medium and high-
speed meteorites.

(4) The transition from the excitation energy of an atom to lumi-
nous energy involves the spectral sensitivity of the eye, whose curve is
given.

Approximate Expression for T

By applying the results of Opik, Whipple takes (Ref. 25):

0]

T = TV where 1, = 8.5.10 0sec. (10k)

This relation is only applicable tc the most brilliant meteors.

Maximum Luminous Intensity of a Meteor

If we neglect the deceleration of the meteorite, at least for a
great part of the vaporization, the altitude corresponding to the maximum
luminosity is, from (102) and (104), the same as the altitude correspond-
ing to the maximum of the speed of vaporization. From (88) and (89),
(103) becomes:

=B
=1 3+p 1-u Mocosz . ; =
= 3TV, Hh »} presuming t(v) --rovP (105)

.

Imax

Magnitude
m,

a) Apparent visual magnitude of a star: 'V,

The apparent visual (av) magnitudes are defined by:

i
"*-«-_\
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I

oS - —= inositi
Lo =" = 2.5 log, g T, Ly, L, are luminosities. (106)

The values ofrﬂav are found when the zenithal angle of the star is less

than 45° (the atmospheric absorption correction is 2 0.1% for § 2 45°),
Thay = © corresponds approximately to the luminosity of the star Vega
U

(odlyra {for aCentauri and olLyra, M), = 0.1).

b) Absolute visual magnitude of a star: My

Ty 1s deduced fromfTigy by taking the distance into account.
Example: oCentauri A (4.3 a-1) iy, = 0.1 ;. , = 4.7
aLyra (27 a-1) Mgy = 0.1 1y = 0.5

c) Absolute visual magnitude of a meteor.

This is the magnitude of a meteor which would be located at
{ = OO, z = 100 km. To move from the apparent magnitude to the absolute
magnitude, two corrections must be made (Figure 16):

(1) Distance effect.

(2) Atmospheric absorption, which is independent of the meteor
altitude (absorption due to the troposphere), and depends on the zenithal
angle of the meteor.

Opik's relation (Ref. 26) is:
My = 6.8 - 2.5 logyoI, (107)
whereTQv is the absolute visual magnitude of the meteor, and I is the
radiated luminous power in the 40O00-A to 7000-A band (in watts).
d) Photographic magnitude: /v

P

The photographic magnitude of a meteor is obtained by directly
comparing the meteor with the images of stars which are on the same photo-
graph as the meteor. Generally we have:‘njp ¥7ﬂy.

Color index: 1 .—_WLp - My

From relatively recent measurements (Ref. 27), i is close to -1 for weak
meteors.
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Altitude Corresponding to the Maximum Magnitude
Eliminating My from (103) (in which we take I = I___) and from (88),

we obtain:

1 3y - o_1_  ~Bu+s 2-3y
~ 3u+2| 3utl ptlll 3u+l 3utl 3(3p+l)
2 Q 4 coS max M ,
plzy) = na. STTH. T Vo o .

]

By taking T = TOVP, by retaining only the function p(zy) = f(Ipay,v,),

we have:
1 _ But+5+p
3u+l 3ut+l
plzy) v Iox Vo | (109)
From (3), we have:
_ ’ 0,434%h 0,434 L oo Qal3k o Yogy
logyg Py = loglo(ph) + H, - H zy = const, H_ ZM‘ )
From (109):
_ 1 ©_ ButS+p v
log)g py = const. + 527 logolax = “3u+T 19810Y% (111)

. 1 _ But5+p .
const., ."2,_5('—3u+1)mv,max 3,+1 1°810Y%

from which;

CH - H ' :
. __h 1 h__ butd+p ,
Zy = const. * 77585 Fuel Lv,max ' 0,438 3u+l 10B10Yo (112)

It is possible, for exémpie,"to use the following approximation for the
atmospheric density p(z), corresponding to 70 € z € 120 km (8): By aver-
age = 0-8 ¥m (h = 70 km). If in addition, we take u = 2/3 (meteorite
remaining similar to itself) and p=1 (Whipple's approximation:

T = T,V), we find (Ref.8):

zy = const. + l’Bﬁgv,max + Lk logygVy- (113)

Topmd b ’
ENDEC IV
rent [53%
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12, TIonization

The ionization occurring in the vicinity of the meteorite is essen-
tially due to collisions between the vaporized atoms and the air mole-
cules, just as in the case of the luminous radiation. In Reference 2, a
more thorough, but concise, study of this phenomenon can be found. Table
14 gives, for a few types of atoms and for different values of the speed,
the proportion of atoms ionized following a collision with an oxygen mole-
cule. Read also Sida and Opik (Ref. 10).

Ionization equation

We assume, as in the case of luminosity, that the necessary power
for ionization is proportional to the decrease per unit time of the ki-
netic energy of the vaporized molecules.

1 aMm
AV V=-3Tqgg "7 (114)

where Tq is a dimensionless number called ionization coefficient, gq is

number of electrons per unit length, and Vi is the ionization potential.

Replacing dM/dt by its value from the mass decrease equation (80), we
obtain:

-,
S A"
S S 4 G« S A | £ 00O oo (115)
177 Tqug ey 7 Tq v, &% M eV

Relation between T and Tq

From simultaneous radio and visual observations on Geminid and
Perseid showers, Millmann and McKinley (Ref. 28) found that Tq/T vary

from 1 to 3, while v varies from 35 to 60 km/sec. The following approxi-
mate relation is deduced:

Tq/T N ve (116)

Radio Magnitude of a Meteor: 7/ (8)

One can define a scale of radio magnitudes as being related to the
ionization per unit length of the meteorite train, which does not involve

I
/
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the visual magnitude. In fact, simultaneous radio and visual observa-
tions have led to the relation, in an empirical way, of these two types
of magnitudes (Ref. 28). The radio magnitude used is the duration of the
echo. An absolute duration is defined as the duration of the echo if the
radar distance were 100 km.

An empirical relation, analogous to (107), is given by McKinley
My = 40 - 2.5 logyoq, (117)
where q is the number of electrons per meter. Eguation (117) is valid
for v =~ 40 km/sec.
Altitude of the Ionization Maximum
By assuming that fhere 1s constant speed, the altitude of the max-

ima of vaporization, luminosity, and ionization speeds are the same.
From (88) and (89), (115) becomes:

o T

M _cosg |

= 1 2 - pth o ‘
9pax - 2V, ¥ Vo H (118)
1 !
where we have taken ot o
’ Tq T 1v2 = L vP*2

By using the same method as for the relation (113), we obtain:
zy = const. + 49 logy v, - L.y 1081 o%ax (119)

Figure 18 shows the altitude Z(qmax) as a function of v = v, depending

[e14

on the values of q___or from (117).

T ,max

13. Conclusion

In this report, we have reviewed the successive phenomena which take
place during the entry of a meteorite into the earth's atmosphere. These
phenomena were described in chronological order to better explain the
mechanisms involved.

When possible, we have outlined the essential characteristics of the
parameters which define a meteor: altitudes corresponding to the begin-
ning and end of the train, deceleration of the meteorite, luminosity, and
ionization. These results are quite general: they can be applied to
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natural meteorites, as well as to artificial meteorites launched from a
rocket; they are useful to all methods of meteorite observations (radio
or visual); and they apply to meteorites of all dimensions, even to mete-
orites of dimensions greater than the millimeter or the centimeter, which
are very rare.

The second part of this study has a strictly practical goal. The
previous results are applied here to the case of interest of natural mete-
orites having usual dimensions (a few tens or a few hundred microns), and
observed by radio means. We see that a simple and easily applicable
description of meteors can be made in this special case.
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Table 1. Average Composition of a Stony Meteorite

Element 0 5i Mg PFe S Al Ca Na,K
% in weight 40 20 i5 1

5
% in number of atoms 57 16-17 1k 6 3 1.3 1 <l

Table 2. Altitudes (in km) Above Which the Transparency of
Reflected Air Molecules is Greater Than 0.9

R (cm) 10 1 0.1 0.01 0.001 stony meteorites
v = 15 km/sec 109 97 86 73 54

= 30 i1h 100 8 77 60

= 60 120 105 94 82 65

Table 3. Altitudes (in km) Above Which the Transparency of
Reflected Air Molecules is Greater Than 0.9

R (cm) 10 i 0.1 0.01 0.001 iron meteors

z (km) 104 92 80 66 46

Table L. AM/MO Decrease of Mass by Impact Sputtering

L9

AV Stony meteorites Iron meteorites

Vo= 3 60 Vo=15 30 60
0.01 0.003 0.02 0.12 0.0001 0.001 0.006

0.1 0.03 0.17 ©0.70  0.001 0.0l 0.06 v, in km/sec

0.28  0.07 0.37 0.95 0.003 0.02 0.13

1 0.12 0.54 0.993 0.006 0.0k 0.21

""J‘ ~.
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Table

5. Av/vO Decrease of Speed by Impact Sputtering

Vertical Trajectory; Stony Meteorite

~_R 16 1 C. 0.C1 0.001 0.0001
80 3°10% 3.10°3 3.1072 3.10-1
= -1
100 2:1072  2:107%  2.10°3  2.1072 p-107%

120 10-6 107 1074 10-3 10-2 107t R in cm
140 6-108 61077 6-106  6.1005  6-10-4  6.1073 z in km
Table 6. Temperature Decrement: X,

Vertical Trajectory; Homotropous Atmosphere HO = 7 km
v Stony meteorites Iron
o) .
meteorites
Compact Porous
15 0.5 0.3 1.7
v_ in km/sec
20 0.4 0.2 1.2 ©
Xo in mm
60 0.3 0.1 0.9
Table 7. Values of Rpgx Above Which Tmax < Tf

Values of the P(Rmax) Function Corresponding to the Altitude
for Which Tpayx = Tt
(Stony Meteorites; Vertical Trajectory)

v
O

11.3
15

30
60

max

30

'(Rmax)

61079
5.1079
3.10-10

y-10"H

Vs in km/sec

R in micron
max

p in g cm~3

’%{
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Table 9. Theoretical Average Altitude at the Beginning of Vis{biiity'
(Vertical Trajectory; Homotropous Atmosphere hy = 7 km)

v, =15 30 60

o

iron meteorites yn 86 98

compact stony meteorites 82 9k 106 z in km
porous stony meteorites 96 108 120 v_ in km/sec

e}

Table 10. Transparency Coefficient of Vaporized Molecules

a
pv3 R=0.1 R=1
31010 0.35 0.08
10t 0.18 0.03 pin g cm™3
3.101t 0.08 0.01 v in km/sec
1012 0.03 0.005 R in cm

Table 11. Values of M(O)/Mb as a Function of v,

v, §=2.1012 ¢ =10"12

o
15 0.1 0.3
30 10-4 0.01
60 10-16 2-10-8

Table 12. Dissociation and Ionization Energies (in ev)

+ +
N, N N2 o2 0 02 H2 H HE A Na NO
dissociat. 9.75 8.7 5 6.5 L.5 2.7 6.5

ionizat. 15.6 1L.5 12.2 13.5 15.4 13.6 15.8 5.1 9.5
1 ev=1.6-20"12 erg
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Table 13.

Rate of Molecular Dissociation: f

Luminosity Coefficient for Impact Radiation: 7p

23

v 5.2  T.h 10.4 14.8 20.9 29.6 41.8 59.2 km/sec
f 0 0 1/8 1/2 1 1 1 1
o 1.7-10°% 7.1 10 9.6 6.4 4.5 3.7 very diluted coma
1, 0 0.4-10™% 5.3 11 14.6 16.7 21 26  dense coms
Table 14. TIonized Atoms by Collisions with Air Molecules
v 14.8 20.9 29.6 41.8 59.2 83.6 Voin
n(Fe*) 2.5-107 12:107  17.4-107 16.4-107 12.7-107 9.1.107 11.6
v (Fet) 0.0025 0.024 0.07 0.13 0.21 0.30
n(0}) 0 107 9.2-107 23.5-107 39.8-107 56.8-107 17.0
n(Mgt) 1.4-107 10.9-107 20.7-107 22107  17.8-107 13-107 13
v(Mg*)  0.0006 0.009 0.0 3 0.0 7 0.11 0.15
n(O;) 0 0.1-107 5.8-107 19.2:107 34.9-107 52-107 20
n(sit)  1.8-107 11.2-107 20.2:107 20.7-107 16.4-107 12.1-107 12.7
v(sit) 0.0009 0.0L 0.0k 0.08 0.12 0.16
ﬁ(og) 0 0.2.107  6.5.107 20-107  35.8-107 52.9-107 19.k
n(O;) 0 1.6-107  g9-107 20.5-107 37.107  53.3-107 20
Additional explanations for Table 1k

v: initial speed (in km/sec)

Vmin*®
(in km/sec)

N(ﬁf): Number of ions of element ¥, per erg of initial energy

v(g") = n(eh)

n(Z £ £F)

: Rate of ionization of ¥ element

Minimum of initial speed which is necessary to create ionization

+
n(0,): Number of O* ions created by collisions with atoms of € element,

per erg

Corrections typed by
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GLOSSARY
Right-angle cross section of the meteorite
Radius of the right-angle cross section
Convex envelope of the meteorite
Speed of the meteorite
Initial speed of the meteorite
Speed at the beginning of the meteorite vaporization
Speed at the end of the meteorite visibility
Speedl of reflected air molecules

Speedal

of molecules vaporized from the meteorite
Speedl of the molecules stripped from the meteorite
Mass of the meteorite

Density of the meteorite

Volume of the meteorite

Energy transfer coefficient

Drag coefficient

Transparency coefficient

Overall specific energy of heating and vaporization
Accommodation coefficent

Shape factor of the meteorite

Coefficient of thermal conductivity

Coefficient of thermometric conductivity

Molecular energy of impact

1Root mean square speeds.




Fnergy of stripping of an atom

Mean molecular diameter

Mean molecular mass

Mean molar mass of air

Specific mass of air

Referential height of the atmosphere
Mean free path

Zenith of the meteor radiant
Altitude

Temperature

Temperature of the meteorite before entry into the dense

atmosphere

~
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Referential height (km)

Mean molar mass
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Deceleration of a spherical stony meteorite during

Figure 15.
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PHYSICS OF METEORS

SUMMARY

ai)/?é e A4
The present report reviews various papers on the ~
physical theory of meteors, and attempts to synthesize them

for applications to radio meteors.

Introduction

The physical theory of meteors involves the description and analysis
of the phenomena which take place both inside of and in the neighborhood
of a meteorite during its path through the atmosphere. The present study
is presented in two parts:

(1) A fairly general report of the processes which lead to the for-
mation of a luminous or ionized track; and

(2) A note which concerns more particularly radio meteorites, and
which leads to a few relations which are necessary for practical applica-
tions.

In this first report, the phenomena are studied in the order by
which they naturally occur: heating, melting and vaporization, and lumi-
nosity and ionization. From the macroscopic standpoint, most of the
parameters which are involved in the explanation of the phenomena were
retained in the formulas. Simplifying hypotheses have then made it pos-
sible to reduce the number of these parameters to obtain directly usable
relations. These form the topic of the previously mentioned second part.

This applies to a body which does not breask up in flight. A few
observations of luminous meteors do not seem to support, however, the hy-
pothesis of a meteorite remaining compact during its trajectory. In this
case, we are led to assume that the meteorite has a structure which is
easily pulverized, and that indeed it does break up into many particles.
The mean density of these agglomerations is not known with precision. We
shall assume that these reservations do not apply to radio meteors.

1. Hypothesis on the Meteorite

To explain quantitatively the physics of meteors, it is necessary to
advance certain hypotheses on the geometrical shape of the meteorite. We
have available only very little information on this subject. However, for




